Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Document Type: Original Article

Authors

1 Irrigation and Drainage, Islamic Azad University, Shoushtar branch, Iran.

2 Department of Water Engineering, Faculty of Agriculture, Islamic Azad University of Ahvaz, Iran.

Abstract

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experimental equations that each of these methods is coupled with the restriction and measurement error. Early the new technique using Artificial Neural Networks (ANNs) based on artificial intelligence has been widely used in various scientific fields, particularly water engineering. In this study, the amount of monthly evaporation from the Siah Bisheh dam reservoir was forecasted up 3 next month using Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) and Feed Forward (FF), of ANNs. The genetic algorithm was used for efficient input variables selection and number of neurons in hidden layer of ANNs. The results showed that the correlation coefficient between measured and computed outputs using RBF, MLP and FF models were 0.92%, 0.90% and 0.88% respectively in the estimation and forecasting of evaporation from the dam reservoir. Therefore the RBF model had more precision rather than MLP and FF models in the estimation and forecasting of monthly evaporation. The results of sensitivity analysis showed that the monthly evaporation from the dam reservoir up 3 next month had most sensitivity to the time of evaporation per month, air pressure on ground surface in 2, 3 and 1 months ago, wind speed on 1000mb pressure in 3 and 2 months ago and air temperature on 300mb pressure in current time respectively.

Keywords


- شادمانی، م. و معروفی، ص.(1390). مقایسه چند روش برآورد تبخیر روزانه از تشت- مطالعه موردی منطقه کرمان. مجله علوم آب و خاک- علوم و فنون کشاورزی و منابع طبیعی، سال پانزدهم، شماره 55.

- طبری، ح.، معروفی، ص.، زارع ابیانه، ح.، امیری چایجان، ر.، شریفی، م. و آخوندعلی، م.(1388). مقایسه روش رگرسیون غیرخطی با روش‌های هوش محاسباتی در برآورد توزیع مکانی آب معادل برف در سراب کارون. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال سیزدهم، شماره 50.

- منهاج، م.ب. ( 1377). هوش محاسباتی، مبانی شبکه عصبی. جلداول، انتشارات علانه طباطبایی، تهران.

- یزدانی، و.، قهرمان، ب. و داوری، ک. (1389). تعیین بهترین روش تجربی برآورد تبخیر از سطح آزاد در اراضی شالیزاری آمل بر پایه آنالیز حساسیت و مقایسه آن با نتایج شبکه عصبی مصنوعی. مجله پژوهش آب ایران، سال جهارم، شماره 7.

- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, (2000). Artificial Neural Networks in Hydrology: Preliminary Concepts. Part I, J. Hydrologic Engineering., ASCE, 5(2), pp. 115-123.

- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, (2000).  Artificial Neural Networks in Hydrology: Hydrologic Applications. Part II, J. Hydrologic Engineering., ASCE, 5(2), pp. 123-137.

- Bruton, J.M., McClendonand, R.W and Hoogenboom, G. (2000). Estimating daily pan evaporation with artificial neural network .Trans.ASAE43(2), pp. 492-496.

- Chen, Y.h. and  Chang, F.J. (2009).  Evolutionary Artificial Neural Networks for Hydrological  Systems Forecasting, Journal of Hydrology doi: 10.1016/j.jhydrol.2009.01.009

- Kisi, O. (2006). Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol, 329(3-4), pp. 636-646. 

- Moghaddamnia, A., Ghafari Gousheh, M., Piri, J., Amin, S. and Han., D. (2009). Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32, pp. 88–97.

- Rahimi Koob, A. (2008). Comparative study of Hargreaves’s and artificial neural. Irrigation Scientific. 26, PP. 253-259.

- Riad, S., Mania, J and Najjar, L. (2004). Rainfall-runoff model using an artificial neural network approach. Math. Comput. Model. 40, pp. 839-846.

- Terz, O and Keskn, M.E (2005). Modeling of daily pan evaporation. J. Appl. Sci. 5, PP.368-372.