River Discharge Time Series Prediction by Chaos Theory

Document Type: Original Article


1 Department of Civil Engineering, Water Group, Mahabad Branch, Islamic Azad University, Iran.

2 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran


The application of chaos theory in hydrology has been gaining considerable interest in recent years.
Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. The
dynamic structures of the seemingly complex processes, such as river flow variations, might be better
understood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,
chaotic behavior of the daily river discharge time series from the BarandozChay, fromSeptember,1983
to August, 2009 is investigated. To reconstruct phase space, the time delay and embedding dimension
are needed and for this purpose, Average Mutual Information (AMI) and algorithm of False Nearest
Neighbors (FNN) wereused. Correlation Dimension method was applied for investigating chaotic
behavior of daily discharge. The delay time and optimum-embedding dimension were obtained 66 and
4 respectively. The low amount of correlation dimension (d=3.1) represents the chaotic behavior of
Barandoz river discharge time series.


احمدی،ح.، طهمورث، م. و محمدعسگری،ح. (1387). استفاده از نظام استنتاج فازی در برآورد رسوب معلق. مجله علوم و مهندسی آبخیزداری،سال دوم،شماره 5،ص. 62-53.

پری زنگنه،م.،عطایی،م.و معلم،پ.(1388). بازسازی فضای حالت سری های زمانی آشوبی با استفاده از یک روش هوشمند. نشریه الکترونیک و قدرت دانشکده مهندسی برق، سال اول، شماره دوم،ص.34-48.

 عطایی،م.(1384). نقش بازسازی فضای حالت در تحلیل سیستم های آشوب گونه و نحوه تعیین پارامترهای مربوطه، مجموعه مقالات دومین همایش آشوب و سیستم های دینامیکی غیرخطی. ایران

فرزین،س.، شیخ الاسلامی،س،ی.و حسن زاده،ی.(1390). تحلیل آشوب پذیری سری زمانی با استفاده از ترسیم فضای فاز و روش بعد همبستگی( بارش ماهانه دریاچه ارومیه). چهارمین کنفرانس مدیریت منابع آب ایران، 13 و 14 اردیبهشت. دانشگاه صنعتی امیرکبیر.ص.33-31.

Damle, C. and Yalcin, A. (2007). Flood Prediction Using Time Series Data Mining. Journal of Hydrology. No. 333,pp.305-316

Farser, A. M. and Swinney, H. L.(1986). Independent Coordinates  for Strange  Attractors  from Mutual  Information. Physical  Review A .Vol. 33,No.2, pp.1134-1140.

Ghorbani, M., A. Kisi, O. and Aalinezhad, M.(2011). A Probe into the Chaotic Nature of Daily Stream Flow time  Series by Correlation Dimension and Largest Lyapanov Methods. Applied Mathematical Modellin.34,pp.4050-4057

Kennel, M., Brown, R. and Abarbanel, H. D .I.(1992).Determining Embedding Dimension for Phase- Space Reconstruction Using a Geometrical Construction. Physical Review A. No.45 (6),pp.3403-3411

Khan, S., Ganguly, A. R. and Saigal, S. (2005).Detection and Predictive Modeling of Chaos in Finite Hydrological Time Series. Nonlinear Processes in Geophysics, No. 12, pp. 41– 53

Kocak, K., Saylan, L.and Sen, O.(2000). Nonlinear Time Series Prediction Of O3 Concentration In Istanbul. Atmosphere Environment, 34 ,pp. 1267 – 1271.

Lisi, F. and Villi, V. (2002). Chaotic forecasting of discharge time series. A case study. J. Am. Water Resour. Assoc. 37,pp. 271-279

Porporato, A. and Ridolfi, L. (1997).Nonlinear analysis of river flow time sequences. Water Resources Research. No. 33(6), pp. 1353 - 1367.

Shang, P. X. Na. and Kamae, S. (2009).Chaotic analysis of  Chaos, Solitons and Fractals. No. 41 time series in the sediment transport phenomenon, Pp.379-368

Sivakumar, B., Berndtsson , R. and Persson , M. (2001). Monthly runoff prediction using phase space reconstruction. Hydrol. Sci. J. 46,pp.377-378.

Solomatine, D. P., Velickov, S. and Wust, J .C. (2001).Predicting Water Levels and Currents in The North Sea Using Chaos Theory and Neural Networks, Proc. 29 th Iahr Congress, Beijin,Chin,pp.32-45.

Stehlik, J. (1999) .Deterministic chaos in runoff series., J. Hydrol. Hydromech. 47,pp.271-287.